Adoption across the supply chain network: For blockchain to provide benefits in tracking and tracing products through the supply chain, it requires adoption and participation by all key parties involved – manufacturers, suppliers, distributors, retailers etc. Getting widespread adoption across a large and complex supply chain network can be challenging due to the need to educate partners on the technology and drive alignment around its implementation. Partners may have varying levels of technical competence and readiness to adopt new technologies. Building consensus across the network and overcoming issues of lack of interoperability between blockchain platforms used by different parties can hinder full-scale implementation.
Integration with legacy systems: Most supply chains have been built upon legacy systems and processes over many years. Integrating blockchain with these legacy ERP, inventory management, order tracking and other backend systems in a way that is seamless and maintains critical data exchange can be an obstacle. It may require sophisticated interface development, testing and deployment to avoid issues. Established processes and ways of working also need to evolve to fully capitalize on blockchain’s benefits, which may face organizational resistance. Ensuring security of data exchange between blockchain and legacy platforms is another consideration.
Maturing technology: Blockchain for supply chain is still an emerging application of the technology. While concepts have been proven, there are ongoing refinements to core blockchain protocols, development of platform standards, evolution of network architectures and understanding of application designs best suited for specific supply chain needs. The technology itself is maturing but not yet mature. Early implementations face risks associated with selecting platforms, standards that may evolve or become outdated over time. Early systems may require refactoring as understanding deepens.
Data and process migration: Migrating large volumes of critical supply chain data from legacy formats and systems to standardized data models for use with blockchain involves careful planning and execution. Ensuring completeness and quality of historical records is important for enabling traceability from the present back into the past. Process and procedures also need to be redesigned and embedded into smart contracts for automation. Change management associated with such large-scale migration initiatives can tax operational resources.
Scalability: Supply chains span the globe, involve thousands or more trading partners and process a huge volume of daily transactions. Ensuring the performance, scalability, uptime and stability of blockchain networks and platforms to support such scale, volume across geographically distributed locations is a significant challenge. Particularly for public blockchains, upgrades may be needed to core protocols, integration of side chains/state channels and adoption of new consensus models to achieve commercial-grade scalability.
Regulatory uncertainty: Regulations around data privacy, cross-border data transfers, requiring personally identifiable or sensitive data still need clarity in many jurisdictions. Blockchain’s transparency also poses risks if mandatory reporting regulations aren’t well-defined. Industries like food/pharma where traceability is critical are more compliant-focused than others, increasing regulatory barriers. Inter-jurisdictional differences further add to complexity. Emerging regulations need to sufficiently cover modern applications of distributed ledger technologies.
Lack of expertise: As an emerging domain, there is currently a lack of trained blockchain developers and IT experts with hands-on implementation experience of real-world supply chain networks. Hiring such talent commands a premium. Upskilling existing resources is also challenging due to limited availability of in-depth training programs focusing on supply chain applications. Building internal expertise requires time and significant investment. Over-dependence on third-party system integrators and vendors also brings risks.
These are some of the major technical, organizational and external challenges faced in implementing decentralized blockchain applications at scale across complex, global supply chain networks. Prudent evaluation and piloting with specific use cases, followed by phased rollout is advisable to overcome these issues and reap the envisioned rewards in the long run. Continuous learning through live projects helps advance the ecosystem.