Blockchain technology has the potential to significantly improve data privacy and security in the healthcare sector. Some of the key ways blockchain can help address privacy concerns include:
Decentralization is one of the core principles of blockchain. In a traditional centralized database, there is a single point of failure where a hacker only needs to compromise one system to access sensitive personal health records. With blockchain, data is distributed across hundreds or thousands of nodes making it extremely difficult to hack. Even if a few nodes are compromised, the authentic data still resides on other nodes upholding integrity and availability. By decentralizing where data is stored, blockchain enhances privacy and security by eliminating single points of failure.
Transparency with privacy – Blockchain maintains an immutable record of transactions while keeping user identities and personal data private. When a medical record is added to a blockchain, the transaction is recorded on the ledger along with a cryptographic signature instead of a patient name. The signature is linked to the individual but provides anonymity to any third party observer looking at the blockchain. Only those with the private key can access the actual file, granting transparency into the transaction itself with privacy of personal details.
Consent-based access – With traditional databases, once data is entered it is difficult to fully restrict access or retract access granted to different parties such as healthcare providers, insurers etc. Blockchain enables granular, consent-based access management where patients have fine-grained control over how their medical records are shared and with whom. Permission controls are written directly into the smart contracts, allowing data owners to effectively manage who can see what elements of their personal health information and to revoke access at any time from previous authorizations. This ensures healthcare data sharing respects patient privacy preferences and consent.
Improved auditability – All transactions recorded on a blockchain are timestamped and an immutable digital fingerprint called the hash is created for each new block of transactions. This hash uniquely identifies the block and all its contents, making it almost impossible to modify, destroy or tamper with past medical records. Any changes to historical records would change the hash, revealing discrepancy. Healthcare providers can demonstrate proper processes were followed, meet compliance requirements and address fault finding more easily with an immutable, auditable trail of who accessed what information and when. This increases transparency while maintaining privacy.
Interoperability while respecting privacy – A key attribute of blockchains is the ability to develop applications and marketplaces to enable the exchange of value and information. In healthcare, this attribute enables the development of application interfaces and marketplaces fueled by cryptographic privacy and smart contracts to allow seamless, real-time exchange of electronic health records across different stakeholders like providers, insurers, researchers etc. while respecting individual privacy preferences. Interoperability improvements reduce medical errors, duplication, and costs while giving patients control over personal data sharing.
Smart contracts for privacy – Blockchain-enabled smart contracts allow complex logical conditions to be programmed for automatically triggering actions based on certain criteria. In healthcare, these could be used to automate complex medical research consent terms by patients, ensure privacy regulations like HIPAA are complied with before granting data access to third parties, or restrict monetization of anonymized health data for specific purposes only. Smart contracts hold potential to algorithmically safeguard privacy through self-executing code enforcing patient-defined access rules.
Blockchain’s core attributes of decentralization, transparency, immutability, access controls and smart contracts can fundamentally transform how healthcare data is collected, stored and shared while holistically addressing critical issues around privacy, security, consent and interoperability that plague the current system. By placing patients back in control of personal data and enforcing privacy by design and default, blockchain promises a future of improved trust and utility of electronic health records for all stakeholders in healthcare. With responsible development and implementation, it offers solutions to privacy concerns inhibiting digitization efforts critical to modernizing global healthcare.