Tag Archives: electronic

WHAT ARE SOME POTENTIAL CHALLENGES THAT STUDENTS MAY FACE WHEN IMPLEMENTING AN ELECTRONIC HEALTH RECORD SYSTEM

The first major challenge is cost and funding. Developing and implementing a full-featured EHR system requires a significant financial investment. This can be a huge obstacle for student projects that have limited budgets and funding. EHR software, servers, infrastructure, installation, training, support and maintenance all have considerable price tags. Students would need to secure appropriate financing to cover these expenses.

A second challenge is technical complexity. Modern EHR systems are enormously complicated from an information technology perspective. They involve massive databases, sophisticated interfacing between different modules and systems, complex workflows, security considerations, data migration processes, customization and configuration. While students have an advantage of youth when it comes to technology skills, implementing an actual EHR system used in clinical care still requires deep expertise in healthcare IT, systems integration, security, and more. Students would need extensive guidance and support from technical professionals.

Interoperability is another obstacle. For an EHR to be truly useful, it needs to be able to securely share data with other key clinical and administrative systems like laboratories, imaging, pharmacies, public health databases and insurance providers. Achieving seamless interoperability according to all required technical, security and privacy standards would be very difficult for students without industry collaborations. Lack of interoperability could render the EHR ineffective or inefficient in real-world use.

User adoption and support is a further hurdle. Even with an excellent EHR product, successful adoption by end users such as clinicians, staff and patients requires careful attention to training, organizational change management, configuration for optimal workflows, responsive help desk assistance and more. Securing user buy-in and providing supportive implementation services could challenge time-constrained student capabilities without external support resources. Poor user experiences could undermine an EHR project.

Compliance with regulatory standards is another area where student projects may face difficulties without proper guidance. Healthcare regulations relating to topics like protected health information security, patient privacy, data accuracy and electronic prescribing are extremely complex. Full compliance certification from bodies such as ONC-ACB (Office of the National Coordinator for Health Information Technology-Authorized Certification Body) would realistically be difficult for students to achieve independently.

Data migration from legacy systems presents a significant challenge. Most healthcare provider organizations have decades of existing patient records, orders, results and other data accumulated in many source systems. Moving all these data into a new EHR requires extremely careful planning, execution of data extracts/transformations/loads, validation of data quality, and readiness of the EHR to properly structure and manage the migrated information. The sizes, complexity and sensitivities of such data migrations would likely overwhelm student project capabilities.

As student projects have likely schedules measured in academic semesters rather than multiple years, time constraints are a major difficulty as well. Full EHR implementations at real healthcare organizations routinely take 2-3 years or longer to complete, considering all the elements mentioned above plus inevitable unforeseen complexities along the way. Major compression of a full system development life cycle into a short academic time frame could threaten project viability or compromise quality.

While healthcare IT experience has considerable educational and career value for students, implementation of an actual clinical-grade EHR system poses extraordinarily complex technical, operational and organizational challenges. With limited resources and timelines compared to commercial EHR vendors and provider organizations, students would face significant difficulties achieving success independently. Robust collaborations with industry mentors, access to external expertise and long-term engagement models may be needed to help students overcome these barriers and increase the feasibility of such projects. Proper scope control focused more narrowly on a functional EHR module or technical component may also allow meaningful learning opportunities within student constraints.