Tag Archives: leading

WHICH COMPANIES ARE LEADING THE WAY IN SOLID STATE BATTERY RESEARCH AND DEVELOPMENT?

Toyota Motor Corporation – Toyota is one of the early pioneers in solid-state battery R&D. They established a pilot plant for solid-state battery production back in 2014. Since then, they have continued robust research efforts. In 2022, Toyota announced that they planned to start producing solid-state batteries by the mid-2020s. Their goal is to use solid-state batteries to extend EV ranges to around 500 km on a single charge. Solid-state technologies could also help reduce manufacturing costs over time.

Sakti3 – This Ann Arbor, Michigan-based startup was acquired by Dyson in 2015. Under Dyson, Sakti3 continued its work developing all-solid-state battery cells using a thin film lithium metal anode. In 2020, Dyson announced it would stop work on solid-state batteries, abruptly ending Sakti3’s research efforts and redirecting resources. However, Sakti3 pioneered some key principles in solid-state cell designs during its tenure.

Cymbet – Founded in 1996, Cymbet is one of the earliest companies focused exclusively on solid-state thin film battery technology. They developed a proprietary alloy used in the creation of thin film solid-state batteries. Cymbet produced some of the first commercially available solid-state microbatteries. While they haven’t produced larger battery packs yet, their work established foundational approaches.

Volkswagen – The German automaker established a new business unit called PowerCo in 2020 to focus on battery technology research among other areas. One particular priority is developing solid-state batteries both in-house and through partnerships. VW aims to introduce solid-state designs around the later half of this decade to improve battery performance metrics.

BMW – This luxury automaker has been researching next-gen batteries including solid-state varieties. In 2021, BMW partnered with solid-state battery startup Solid Power to co-develop production-oriented cells. Their goal is to incorporate solid-state designs into vehicles starting in 2025. BMW is taking a collaborative approach which could help accelerate the technology.

QuantumScape – Founded in 2010, this Silicon Valley company went public via SPAC merger in late 2020. QuantumScape is developing solid-state lithium metal batteries using a ceramic separator. Independent testing has shown promising results for the company’s prototype cells including increased energy density and improved safety. They plan to start production in 2024.

Solid Power – Based in Colorado, Solid Power is partnering with BMW and Ford to further develop its sulfide all-solid-state battery technology. The company believes its design could offer 50% more energy density than conventional lithium-ion batteries. Solid Power aims to scale up production and have pre-production cells ready by 2024.

LG Chem – The Korean battery giant established an energy solutions company called LG Energy Solution in 2020. They have an R&D division exploring solid-state technologies. LG aims to mass produce solid-state EV batteries by 2030 that could increase battery capacities by 30%. With significant existing manufacturing scale, LG is well-positioned for future commercialization.

CATL – China’s top battery supplier is also working on solid-state innovations. In 2021, they demonstrated a prototype solid-state battery pack and aims to start production around 2024-2025 pending further testing and optimization. CATL has the resources to scale solid-state rapidly depending on how their research progresses over the next few years.

Ionic Materials – Another US-based startup, Ionic Materials develops a proprietary solid polymer electrolyte material that could provide cost advantages over other solid-state approaches. Partners include Hyundai and Stellantis. Ionic aims to enable high-energy solid-state batteries by 2026 that exceed the performance of today’s lithium-ion packs.

As this overview shows, automakers and battery producers are aggressively pursuing solid-state technologies through both internal R&D and external partnerships. Early prototypes demonstrate the potential for significantly higher energy densities and greater safety. Several challenges around manufacturing processes and long-term cycling still need to be overcome before solid-state designs are ready for commercial vehicle applications. Major corporations are positioning themselves to be ready when the technology matures later this decade. Continued progress in 2022-2024 will become increasingly evident as more collaborative projects bear fruit.