The Computer Systems Technology program requires students to complete a Capstone Project in their fourth and final term. Past projects have included developing an application to digitally archive newsletters and magazines for a non-profit organization, creating a web application for managing a dog rescue organization’s volunteer schedule and foster home program, and designing and implementing a network monitoring system for a small business. These projects give students experience working on a substantial software development project from start to finish, including requirements gathering, design, development, testing, and presentation.
In the Environmental Protection Technology program, the capstone project involves working with an external partner organization to address an environmental challenge they are facing. Recent projects have included developing a plan to improve energy efficiency and reduce greenhouse gas emissions at a recreation facility, researching and recommending improvements to stormwater management for a municipal government, and conducting an environmental site assessment and remediation plan for a contaminated former industrial property. Working directly with industry partners exposes students to real-world environmental issues and helps build important career connections.
The Materials and Manufacturing Engineering Technology program’s capstone project is completed in teams and involves designing and prototyping a product or process. Past projects have included designing jigs and fixtures for manufacturing a new automotive part, developing a process to 3D print aluminum parts for the aerospace industry, and creating prototypes for smart sensors to monitor bridge infrastructure. Through projects focused on applied design and manufacturing, students gain skills in project management, prototyping, testing, and communicating technical topics to stakeholders.
In the Mechanical Engineering Technology program, the capstone project is focused on mechanical design and testing. One recent project involved designing and building a device to assist in sorting recycling materials. Working with a waste management company, the team developed concept designs, created detailed 3D models, built prototypes, and performed testing to evaluate efficiency and durability. Other past projects have included designing test rigs for scientific equipment, creating assistive devices for persons with disabilities, and developing innovative green energy solutions. The projects provide hands-on learning and practical experience in applying mechanical design skills.
The Health Sciences program’s capstone project for Medical Laboratory Science students involves working in one of BCIT’s on-campus teaching labs to gain exposure to the full scope of lab operations and procedures. They may carry out testing in areas like clinical chemistry, hematology, transfusion science, microbiology or molecular diagnostics. Working alongside teaching lab professionals, students apply the knowledge and techniques learned throughout the program. The immersive experience helps solidify skills and prepare students for clinical practice in hospital or private labs.
For the Electrical Foundation program, the capstone project requires teams of students to design and prototype an electrical/electronic system, circuit or product. Past projects have included designing automated irrigation controllers for greenhouses, creating a touchscreen-operated magnetic levitation system for science education, and developing smart garden sensors to monitor soil moisture and automate watering. These substantial design projects provide opportunities to apply technical skills while gaining experience in team-based problem solving and project management typical of industry roles.
As these examples from different BCIT programs illustrate, capstone projects bring together the technical skills and hands-on experience students acquire throughout their studies. By working on substantial, applied projects that often involve industry partners, students gain opportunities to conduct autonomous work, manage timelines, communicate complex ideas and troubleshoot – all important for building career-readiness. Whether designing new products, developing software or working in labs and facilities, capstone projects immerse students in experiences to cement their learnings and abilities expected of professionals in their fields. The in-depth, real-world projects leave students well-prepared to successfully transition to industry work or further education after graduation.