Tag Archives: contributed

CAN YOU PROVIDE SOME EXAMPLES OF HOW NURSING CAPSTONE PROJECTS HAVE CONTRIBUTED TO ADVANCEMENTS IN THE NURSING PROFESSION

Nursing capstone projects have helped advance the nursing profession in many ways by giving nursing students the opportunity to conduct original research or propose evidence-based practice changes through rigorous independent work at the culmination of their academic programs. While all capstones provide value in helping students demonstrate their acquired knowledge and skills, many also directly contribute new insights and innovations that have benefited patient care. Here are some examples:

One significant area nursing capstones have impacted is quality improvement initiatives. Many final projects focus on identifying issues with current practices and developing plans to enhance care delivery methods. One notable project proposed a new admission screening tool for patients at high risk of delirium. Testing proved the tool more accurately identified at-risk individuals, allowing earlier interventions shown to reduce delirium rates. The hospital implemented the screening tool organization-wide. Other projects have led to revised protocols for postoperative pain management, reducing readmission rates or improving patient satisfaction scores. Such evidence-based practice changes directly improve outcomes.

Capstones have also uncovered new knowledge and perspectives through original research. One explored nurses’ job satisfaction and its link to perceived supervisor support. The findings supported investing in leadership development programs to boost retention, a high-cost issue. Another studied providers’ compliance with central line-associated bloodstream infection prevention practices and determined targeted just-in-time education raised adherence rates. As a result, the institution adopted mandatory education modules shown by the research to curb these expensive and life-threatening infections. Insights like these add to the empirical understanding of important issues in nursing.

Other projects have illuminated under-discussed areas and populations. One assessed barriers to hospice care among Chinese Americans, an underserved group. It revealed cultural beliefs hindering acceptance and lack of in-language materials. As a result, the hospice developed new Chinese-language resources and outreach strategies shown through subsequent research to greatly increase enrollment among Chinese patients. Another researched the impact of childhood trauma on homeless young adults’ health, illuminating risks and needs often overlooked. Such studies draw attention to inadequately addressed issues, furthering equity in healthcare.

Some graduates have instituted entirely new programs found to effectively meet needs. One developed and pilot tested an early postoperative physical therapy protocol to prevent functional decline in elderly surgical patients. Data supported its ability to get patients mobilizing sooner with fewer complications versus standard care. The medical center adopted the program hospital-wide. Another proposed and implemented a chronic disease self-management workshop series. Long-term tracking showed reduced healthcare utilization and costs among participants versus non-participants, prompting the local health department to provide ongoing funding. Innovations like these establish new standards of effective care.

Some students have created useful resources applied beyond their institutions. One developed a decision-making guide for home health nurses assessing pressure injury risk and treatment strategies. The guide was endorsed by a national wound care organization for wide distribution. Others have published care protocols or educational materials on precepting students, cancer symptom management, diabetes care and more. These contributions disseminate evidence-based solutions increasing quality and accessibility of care.

Through examples like these, nursing capstones are directly bettering patient outcomes, advancing professional understanding, innovating care delivery and addressing inequities—substantively contributing to improvements in every aspect of the nursing profession and healthcare system. Their potential continues growing as new challenges arise. By providing a platform for applying knowledge toward original scholarship and practice change, capstones cultivate leaders driving the field forward in impactful ways. They represent a vital means of supporting the profession’s evolution and enhancing its service to individuals and populations.

HOW HAS IMPERIAL COLLEGE LONDON CONTRIBUTED TO SUSTAINABLE ENERGY RESEARCH

Imperial College London has a long and distinguished history of conducting pioneering research that has contributed significantly to the development of sustainable energy solutions. One of the earliest areas of focus for the university was solar energy, with researchers studying photovoltaic cells and solar thermal technologies as far back as the 1950s. Imperial explored both silicon-based photovoltaics and early thin-film technologies, making important contributions to improving conversion efficiencies and lowering production costs.

In more recent decades, Imperial has ramped up its sustainable energy research activities substantially. In 2006, the Grantham Institute – Climate Change and the Environment was established to bring together Imperial’s world-leading expertise across many areas relevant to mitigating and adapting to climate change. This includes research focusing on low-carbon energy technologies and systems, energy storage, smart grids and distribution networks, renewable power generation from sources such as solar, wind, marine and geothermal, low-carbon transport, sustainable urban design and planning, climate change impacts and resilience, environmental policy and economics.

One of the key areas Imperial has investigated is solar photovoltaic technology, with a focus on developing new low-cost thin-film technologies that offer huge potential for solar power deployment. Researchers developed some of the world’s most efficient multi-junction solar cells using compound semiconductors like gallium arsenide. They also pioneered the use of transparent oxides as front contacts on thin-film silicon solar cells, enabling manufacturing efficiencies. More recently, Imperial scientists have researched emerging perovskite solar cell materials that could rival silicon-based PV for cost and performance.

Energy storage is another major research theme, especially as it relates to integrating variable renewable power sources like wind and solar into the grid. Imperial has developed advanced lithium-ion batteries, flow batteries, supercapacitors and thermal energy storage technologies. They are also exploring hydrogen fuel cells and production from renewable power as an energy carrier. One notable project involved deploying the UK’s first residential energy storage system linked to rooftop solar PV.

Imperial is a world leader in research into sustainable marine renewable energy sources like wave, tidal, and offshore wind power. Engineers played key roles in developing innovative offshore wind turbine and foundation designs. Oceanographers study resource characterization and environmental impacts. Social scientists investigate community engagement and public policy support. Researchers also work on testing marine energy converters and developing advanced power take-off and control systems.

Energy systems modeling and analysis is another core area of focus. Imperial researchers build sophisticated energy system simulation tools and whole-systems optimization models to design low-carbon, resilient and affordable pathways for countries, regions and cities. This work evaluates integration of renewables, low-carbon heating, electrified transport, grid infrastructure needs, demand-side flexibility and more. Key partnerships include advising policymakers at national and city levels.

Imperial also conducts extensive research regarding low-carbon transport solutions like electric vehicles, vehicle-grid integration, hydrogen fuel cell vehicles, advanced biofuels and sustainable urban mobility planning. Other work examines low-carbon heating technologies such as heat pumps, district heating networks and integrated community energy systems combining generation, storage and demand-side response.

Through these many research efforts over decades, Imperial College London has made numerous seminal contributions advancing sustainable energy technologies, systems, policies and solutions. They continue tackling critical challenges as countries worldwide accelerate transitions to net-zero carbon economies powered increasingly by renewable energy. Imperial’s cross-disciplinary expertise will prove invaluable for pioneering the next generation of clean energy innovations needed to mitigate climate change. Their researchers play a leading role in both scientific progress and advising real-world deployment of sustainable energy solutions globally.