Tag Archives: what

WHAT ARE SOME COMMON CHALLENGES ORGANIZATIONS FACE WHEN IMPLEMENTING PREDICTIVE ANALYTICS

Data issues: One of the biggest hurdles is obtaining high-quality, relevant data for building accurate predictive models. Real-world data is rarely clean and can be incomplete, inconsistent, duplicated, or contain errors. Premises must first invest time and resources into cleaning, harmonizing, and preparing their raw data before it can be useful for analytics. This data wrangling process is often underestimated.

Another data challenge is lack of historical data. For many types of predictive problems, models require large volumes of historical data covering many past examples to learn patterns and generalize well to new data. Organizations may not have accumulated sufficient data over time for all the variables and outcomes they want to predict. This limits what types of questions and predictions are feasible.

Technical skills: Building predictive models and deploying analytics programs requires specialized technical skills that many organizations do not have in-house, such as data scientists, predictive modelers, data engineers, and people with expertise in machine learning techniques. It can be difficult for groups to build these competencies internally and there is high demand/short supply of analytics talent, which drives up costs of outside hiring. Lack of required technical skills is a major roadblock.

Model interpretation: Even when predictive models are successfully developed, determining how to interpret and explain their results can be challenging. Machine learning algorithms can sometimes produce “black box” models whose detailed inner workings are difficult for non-experts to understand. For many applications it is important to convey not just predictions but also the factors and rationales behind them. More transparent, interpretable models are preferable but can be harder to develop.

Scaling issues: Creating predictive models is usually just the first step – the bigger challenge is operationalizing analytics by integrating models into core business processes and systems on an ongoing, industrial scale over time. Scaling the use of predictive insights across large, complex organizations faces hurdles such as model governance, workflow redesign, data integration problems, and ensuring responsible, equitable use of analytics for decision-making. The operational challenges of widespread deployment are frequently underestimated.

Institutional inertia: Even when predictions could create clear business value, organizational and political barriers can still impede adoption of predictive analytics. Teams may lack incentives to change established practices or take on new initiatives requiring them to adopt new technical skills. Silos between business and technical groups can impede collaboration. Also, concerns about privacy, fairness, bias, and the ethics of algorithmic decisions slowing progress. Overcoming institutional reluctance to change is a long-term cultural challenge.

Business understanding: Building predictive models requires close collaboration between analytics specialists and subject matter experts within the target business domain. Translating practical business problems into well-defined predictive modeling problems is challenging. The analytics team needs deep contextual knowledge to understand what specific business questions can and should be addressed, which variables are useful as predictors, and how predictions will actually be consumed and used. Lack of strong business understanding limits potential value and usefulness.

Evaluation issues: It is difficult to accurately evaluate the true financial or business impact of predictive models, especially for problems where testing against real future outcomes must wait months or years. Without clear metrics and evaluation methodologies, it is challenging to determine whether predictive programs are successful, cost-effective, and delivering meaningful returns. Lack of outcome tracking and ROI measurement hampers longer-term prioritization and investment in predictive initiatives over time.

Privacy and fairness: With the growth of concerns over privacy, algorithmic bias, and fairness, organizations must ensure predictive systems are designed and governed responsibly. Satisfying regulatory, technical, and social expectations regarding privacy, transparency, fairness is a complex challenge that analytics teams are only beginning to address and will take sustained effort over many years. Navigating these societal issues complicates predictive programs.

Budget and priorities: Establishing predictive analytics programs requires substantial upfront investment and ongoing resource commitment over many years. Competing budget priorities, lack of executive sponsorship, and short-term thinking can limit sustainable funding and priority for long-term strategic initiatives like predictive analytics. Without dedicated budget and management support, programs stagnate and fail to achieve full potential value.

Overcoming these common challenges requires careful planning, cross-functional collaboration, technical skills, governance, ongoing resources, and long-term organizational commitment. Those able to successfully address data, technical, operational, cultural and societal barriers lay the foundation for predictive success, while others risk programs that underdeliver or fail to achieve meaningful impact. With experience, solutions are emerging but challenges will remain substantial for the foreseeable future.

WHAT RESOURCES ARE AVAILABLE TO UCF STUDENTS TO SUPPORT THEM IN COMPLETING THEIR CAPSTONE PROJECTS?

The University Writing Center at UCF provides tutoring support to help students with all aspects of their capstone projects from brainstorming and outlining to drafting and revising. Students can schedule appointments for one-on-one tutoring sessions to get feedback on their project proposals, literature reviews, methods sections, results sections, and discussions/conclusions. Tutors are trained to work with students at all stages of the writing process to help them clearly communicate their ideas and research. They are equipped to help with both the content and structure of papers as well as APA style formatting. Students are encouraged to visit the Writing Center multiple times as they develop their projects.

In addition to the Writing Center, UCF students have access to research consultations with librarians through the UCF Libraries. Librarians provide guidance on how to search for and evaluate academic resources for capstone literature reviews and how to formally cite sources in papers. They can advise students on accessing data sources or subject specialists if needed for their particular projects. Students are able to schedule individual meetings with librarians to get customized support in developing an effective research process and finding appropriate materials.

For students completing quantitative or experimental capstone projects, UCF’s Statistical Consulting Center provides free help on topics like choosing appropriate research methods and study designs, conducting data analyses in statistical software like SAS or SPSS, and accurately interpreting results. Consultants assist with everything from shaping draft methodology sections to troubleshooting issues that arise during data collection or analysis phases. Like with the Writing and Research Centers, scheduling appointments ensures students receive personalized attention tailored to their individual research questions and data.

The College of Graduate Studies at UCF oversees the university’s graduate programs and provides various resources to aid students as they undertake capstone work. They offer sample capstone project proposals and completed papers as models for formatting and content. Their website includes guides on the capstone process with timelines and approval procedures. For students completing theses, dissertations or other project types requiring committee approval, the College of Graduate Studies staff can answer questions about committee selection, proposal defense preparations and final submission of papers.

Within individual colleges and departments, many offer targeted support specific to the disciplines’ methods, topics and presentation formats. For instance, the College of Engineering and Computer Science runs prep workshops on creating effective posters, presentations and demonstrations for capstone projects. The Nicholson School of Communication holds proposal writing clinics where faculty provide structured feedback on developing focused research questions and study designs. Health professions programs routinely host capstone fairs where current students exhibit their projects and share advice for upcoming cohorts. Accessing college-level resources allows students to get guidance tailored to the expectations of their specific fields.

Many academic departments and research centers at UCF also sponsor undergraduate research programs, funding and conference presentation opportunities that can support capstone endeavors. For example, the Burnett Honors College provides funding for honors thesis research projects through its Honors in the Major program. Research and fellowship offices in individual colleges publicize internal and external grant programs that can help cover costs for equipment, supplies, participant compensation or conference travel to disseminate capstone findings. Additionally, involvement in faculty research labs and centers exposes undergraduates to ongoing projects and research mentorship that can inspire capstone topics or provide data sources.

UCF offers various campus-wide resources that, while not specific to capstones, can still aid students throughout their final projects. Health and wellness services like campus counseling and the Recreation and Wellness Center promote reducing stress – important for the self-care needed to sustain long-term capstone work. Technical support from places like Computer Services and Telecommunications helps with any IT issues that arise from data collection software, statistical programs or multimedia presentations. The extensive academic and professional support infrastructure at UCF works together to empower students to successfully complete their capstone requirements and gain valuable experiential learning.

UCF students are well-supported as they undertake capstone projects through personalized tutoring, research consultations, statistical help, general guidance from graduate and department offices, discipline-specific workshops, funding opportunities, involvement in research labs and campus wellness resources. By taking advantage multiple on-campus centers, faculty mentorship and fellowships, undergraduates are equipped with necessary tools and expertise to design, implement and communicate original research or projects before graduating.

WHAT ARE THE BENEFITS OF INDUSTRY EXPOSURE IN CAPSTONE PROJECTS

Capstone projects are meant to allow students nearing the end of their academic programs to demonstrate the skills and knowledge they have gained throughout their studies by taking on a substantial multi-disciplinary project. Incorporating industry exposure into these capstone projects provides numerous benefits both for the students as well as for the partnering industry organizations.

One of the key benefits of industry exposure is that it allows students to gain real-world experience working on an actual project or problem that an industry is facing rather than a theoretical or hypothetical scenario. This experience of working directly with industry partners to identify needs, define requirements, implement solutions, and see projects through to completion provides invaluable lessons that cannot be taught inside a classroom. Students learn critical soft skills like project management, teamwork, communication, problem-solving, and time management that are essential for their future careers but are best developed when applied to real problems and constraints.

Working directly with industry exposes students to current practices, technologies, and challenges that companies are facing in their respective fields. Through exposure to industry mentors, workplace settings, resources, and processes, students learn what is actually expected of new graduates entering the workforce. They gain a more accurate understanding of the transition from academics to professional employment versus learning only from textbooks, labs, or theoretical classwork. The experience also allows students to build professional networks within organizations that may lead to job or internship opportunities down the road.

From an industry perspective, capstone projects that involve real collaboration provide organizations an opportunity to solve problems or develop new capabilities at low cost by tapping into the skills and perspectives of students. Students bring fresh eyes and can provide innovative solutions or approaches that industry professionals may have overlooked due to familiarity with existing processes or constraints. Successful student projects also help companies pilot potential new technologies, products or services with reduced risk versus internal development. Where applicable, some companies have been able to commercialize student project results or hire capstone teams to continue developing initial solutions and prototypes.

Industry exposure benefits educational institutions as well by ensuring their curriculum and programs remain relevant and aligned with current workplace needs. Through working directly with companies, faculty gain insights into emerging trends, technologies and skill requirements. They learn what additional topics or experiences need to be incorporated into courses and programs to continue preparing graduates optimally for their desired careers. The connections built between schools and industry also open doors for additional research collaborations, funding opportunities, internships and jobs. Schools with visible industry partnerships gain prestige which attracts higher quality prospective students.

Students gain confidence and real validation of their abilities when they can leverage their education to make an impact on meaningful industry challenges. Observing projects through to real implementation versus theoretical conclusions keeps students engaged and motivated throughout their studies. Early exposure to professional environments through capstone collaboration also helps ensure a smooth transition for graduates entering the workforce. Companies benefit from low-cost pilots, solutions and talent identification while schools see improved responsiveness, networking and results. The combination of students’ fresh perspectives partnered with industry guidance and needs leads to highly valuable experiences and outcomes for all involved.

A factor critical to optimizing the benefits is the structure and management of industry capstone partnerships. Clear and formalized processes need to be in place by schools for partner identification and coordination, scope definition, confidentiality considerations, mentorship, deadlines and deliverables. Regular check-ins between all stakeholders including faculty advisors help guide projects, address challenges and capture learnings. Documentation and presentation of results are key to demonstrating impact. With the right framework balancing academic objectives with real industrial constraints and needs, capstone projects can become a transformative experience bridging education and career preparation in a highly impactful way for students and industry alike.

Industry exposure incorporated strategically into capstone projects provides students unparalleled opportunities to apply their learning while developing essential professional skills. Companies benefit from cost-effective pilots, networking and insights to drive innovation. Schools strengthen program relevancy and marketability through industry‐informed curricula and relationships. With dedicated coordination and guidance, capstone collaborations have large potential to transform students’ academic experiences while tackling authentic problems—creating impactful benefits for individuals, organizations and educational institutions into the future.

WHAT ARE SOME EXAMPLES OF RARE PEDIATRIC CANCERS THAT COULD BE THE FOCUS OF A CAPSTONE PROJECT

Rare cancers that affect children are of particular interest for capstone projects because they often receive less research funding and attention compared to more common adult cancers. Developing a deeper understanding of the molecular mechanisms, treatments, and patients’ experiences with rare pediatric cancers can help advance care for these vulnerable populations. Here are some examples of rare pediatric cancers that would be suitable topics for an in-depth senior or graduate-level capstone project:

Neuroblastoma is a rare cancer that forms in certain types of nerve tissue and most commonly appears in young children, often presenting in the adrenal glands, chest, abdomen or neck. It accounts for around 15% of all childhood cancers but less than 1% of all cancers diagnosed. Despite being rare, neuroblastoma is responsible for more deaths among children with solid tumors than any other cancer. A capstone project could explore new targeted therapies and immunotherapies in development for high-risk neuroblastoma. The student could conduct a literature review of recent clinical trials and analyze molecular markers to identify patient subgroups most likely to respond to certain treatments. Understanding the genetics and biology of neuroblastoma in more detail could help accelerate the development of personalized, precision medicine approaches.

Ewing sarcoma is the second most common bone cancer in children after osteosarcoma. It remains quite rare, accounting for less than 1% of all cancers and 3% of childhood cancers. Ewing sarcoma most often appears in bones of the pelvis, legs, chest, or spine and is characterized by translocations linking the EWS gene to an ETS family gene. A capstone project on Ewing sarcoma could comprehensively review past and current standard of care therapies, while also evaluating promising new targeted drugs and immunotherapies in preclinical and early phase clinical testing. Interviews with patients, families and clinicians could provide insights into the challenges of living with and treating this aggressive bone cancer. Identifying biomarkers for early detection and response to treatment is another important area warranting further research highlighted by such a project.

Rhabdomyosarcoma is a type of soft tissue sarcoma that develops from skeletal muscle cells or muscles in other parts of the body. It represents about 3-4% of all childhood cancers but is still considered rare. The most common locations are the head and neck region, genitourinary tract, and extremities. Subtypes include embryonal, alveolar and pleomorphic. A capstone project could focus specifically on the more aggressive alveolar subtype, analyzing its distinctive genetic mutations and exploring combination therapies to overcome resistance. The student might profile a series of alveolar rhabdomyosarcoma cases at their institution to identify clinical or molecular characteristics associated with improved outcomes. Interviews with long-term survivors could offer unique perspectives on the emotional and physical impacts as well as care needs over time.

Atypical teratoid/rhabdoid tumor (AT/RT) is an extremely rare and highly malignant type of cancerous brain tumor that primarily affects young children. It develops from cells in the central nervous system and has a very poor prognosis despite intensive multimodal therapy. AT/RT represents less than 1% of all pediatric central nervous system tumors but is the focus of considerable research efforts given its lethal nature. A project delving into the molecular hallmarks and epigenetic dysregulation characteristic of AT/RT could survey targeted agents in preclinical testing and early stage clinical trials. Collaboration with neuro-oncologists may provide access to tumor samples for exploring biomarkers of sensitivity and resistance. Investigating supportive care interventions and quality of life for patients undergoing complex treatment regimens could also yield important insights.

Wilms tumor, also known as nephroblastoma, begins in the kidneys and is the most common malignant tumor of the kidneys in children. It represents approximately 6% of all childhood cancers yet remains defined as a rare cancer. Wilms tumor is usually found in children younger than 5 years old, with 80-90% of cases arising before the age of 6. A capstone topic could extensively review protocols from cooperative clinical trials groups to analyze factors influencing event-free survival overtime. The student might conduct interviews with nursing professionals and child life specialists to gain perspective on psychosocial support needs throughout the patient journey. Exploration of genomic characterization efforts aimed at more precisely stratifying risk could also yield valuable insights for precision oncology approaches.

Rare pediatric cancers like neuroblastoma, Ewing sarcoma, rhabdomyosarcoma, AT/RT and Wilms tumor present opportunities for in-depth capstone study. Delving into disease biology, therapeutic developments, clinical research challenges, and patient/family experiences could advance understanding and care for these underserved populations. With a comprehensive literature review augmented by primary data collection, a student could produce an original research project meaningfully contributing to progress against devastating pediatric cancers.

WHAT WERE SOME OF THE CHALLENGES FACED DURING THE IMPLEMENTATION OF THE FOOD WASTE REDUCTION STRATEGY

One of the major challenges faced during the implementation of food waste reduction strategies was changing public behavior and mindsets around food. For many years, most people have viewed excess food as unimportant and not given much thought to wasting it. Things like clearing one’s plate, over-ordering at restaurants, or throwing out old leftovers and expired foods were ingrained habits. Shifting such habitual behaviors requires a significant mindset change, which can be difficult to achieve. It requires sustained education campaigns to raise awareness of the issue and its impacts, as well as motivation for people to adjust their daily food-related routines and habits.

Another behavioral challenge is that reducing food waste often requires more planning and coordination within households. Things like meticulously planning out meals, sticking to grocery lists, adjusting portion sizes, and making better use of leftovers necessitates more effort and time compared to past habits. While improving skills like meal planning, it is an adjustment that not everyone finds easy to make. For families with both parents working long hours, seeking convenience is also an understandable priority, leaving little time or energy for meticulous waste-reduction efforts.

From a business and operations perspective, one challenge is the lack of reliable data on food waste amounts. Most organizations, whether food manufacturers, grocery retailers or food service companies, have historically not tracked the scale of food that gets wasted within their facilities and supply chains. Without robust baseline data, it is difficult to analyze root causes, identify priorities and set meaningful targets for improvement. Some have also been hesitant to publicly share waste data for risk of reputational damage. The lack of common measurement standards has made industry-wide benchmarking and goal setting a challenge.

On the policy front, the mixed competencies shared between different levels and departments of government have made coordinated action difficult. Food waste touches on the responsibilities of agriculture, environment, waste collection, business regulations, public awareness campaigns and more. There is sometimes lack of clarity on who should take the lead, and duplication or gaps can occur between different actors. The complexity with multiple stakeholders across many domains further impedes swift, aligned policy progress to drive systemic changes.

Even when strategies are set, enforcement is a big challenge especially related to food date labeling policies. Standardizing and simplifying date labels to distinguish between ‘Best Before’ – indicating quality rather than safety – and ‘Use By’ date is an important intervention. Inconsistent application of new labeling rules by some in the vast food industry has undermined the effectiveness of this policy change to reduce consumer confusion and subsequent waste. Stronger compliance mechanisms are needed.

From a technological standpoint, while innovative solutions are emerging, scaling these up to have meaningful impact requires extensive investments of time and capital. Food redistribution through apps needs to overcome challenges like adequate coverage, logistical issues in arranging pick ups, necessity of refrigerated transportation, and standardizing quality parameters of donor and recipient organizations. Similarly, food waste valorization is still at a nascent, experimental phase with challenges of developing financially viable business models at commercial scale. These solutions are also capital intensive to set up advanced processing facilities.

Even simple measures like home composting have faced adoption challenges due to requirements like space, installation efforts, maintenance skills and concerns over pests and smells. Compostable packaging is not universally available and green bins for food scrap collection are not scaled up widely in all geographies to make participation easy. Expanded waste collection infrastructure requires substantial capital allocations by local governments already facing budget constraints.

From a supply chain coordination perspective, a key challenge is data and technology integration across the long and complex path food takes from farms to processing units to transport networks to retailers to finally consumers. Lack of end-to-end visibility impedes root cause analysis of where and why waste is originating. It also restricts opportunities for collaborative optimization of inventory, ordering and demand planning practices to minimize food left unconsumed at any stage. Silos between different entities and lack of incentives for open data sharing have hampered integrated solutions.

Reducing food waste faces behavioral, operational, policy-related, technological, financial as well as supply chain coordination challenges. It requires multifaceted, long-term efforts spanning awareness drives, standardized measurement, supportive regulations, scaled infrastructure, collaborative innovation and adaptability to local conditions. The complexity of root causes necessitates system-wide cooperation between industry, governments, researchers and communities to achieve meaningful impact over time. While progress has been made, continued dedication of resources and coordination between different stakeholders remains important to sustain momentum in tackling this massive global issue.